Sunday, 3 July 2016

Titan (Moon Of Saturn)
 
Titan is Saturn's largest moon and the second largest in the solar system (after Ganymede of Jupiter). It is the only moon in the solar system with clouds and a dense, planet-like atmosphere. 
Scientists believe that conditions on Titan are similar to Earth's early years (the main difference is that, because it is closer to the sun, Earth has always been warmer). According to NASA, "In many respects, Saturn's largest moon, Titan, is one of the most Earth-like worlds we have found to date."
 


Looking Even More Earth-Like

The Cassini mission is sending us better and better data and images of just what’s happening on the surface of Saturn’s moon Titan. And it’s beginning to look awfully familiar...
The latest data NASA researchers have been pouring over shows new details about the strange lakes and seas that trickle across Saturn’s frigid moon, Titan. It also draws comparisons between the only other interstellar body found to have similarly liquid lakes and seas on its surface—our very own Earth. Unlike our watery planet, though, Titan’s lakes and seas are made up of pure liquid methane.
But how do the seas stay filled up with all that methane? One potential new explanation takes the liquid cycle we see here on Earth, tweaks it slightly to account for Titan’s own conditions, and comes up with something pretty familiar: Rain.
Of course, instead of being made up of liquid water, that rain is also made up of pure liquid methane. Still, it is rain which, as it falls, fills up the lakes. These lakes then create Titan’s shorelines, which look very like our own as you can see in this flyover visualization:https://youtu.be/RrGPtCdItBw

Researchers even suspect the weather along those Titan shorelines behaves a lot like the shores along our own seas, with temperatures along them influenced by the temperature in the lake.
But although the liquid cycle coupled with Titan’s nitrogen-heavy atmosphere may look a lot like Earth, there’s plenty of differences to separate them. For instance: Titan’s almost total lack of oxygen, the freezing temperatures, and the pesky fact that its liquid methane filling up those seas instead of water. Still, it’s quite a familiar sight to see in some incredibly strange terrain. 
 



  • Diameter: 3,200 miles (5,150 kilometers), about half the size of Earth and almost as large as Mars
  • Surface temperature: minus 290 Fahrenheit (minus 179 degrees Celsius), which makes water as hard as rocks and allows methane to be found in its liquid form
  • Surface pressure: Slightly higher than Earth's pressure. Earth's pressure at sea level is 1 bar while Titan's is 1.6 bars.
  • Orbital period: 15,945 days
Titan's name comes from Greek mythology. The Titans were elder gods who ruled the universe before the Olympians came to power, according to the Theoi Project website. 

The moon was discovered by Dutch astronomer Christiaan Huygens in 1655. The Huygens lander probe sent to the moon aboard NASA's Cassini spacecraft by the European Space Agency is named in his honor. Huygens was the first human-built object to land on Titan's surface. [Amazing Photos of Titan]
Titan's diameter is 50 percent larger than that of Earth's moon. Titan is larger than the planet Mercury but is half the mass of the planet.
Titan's mass is composed mainly of water in the form of ice and rocky material.
Titan has no magnetic field.



Titan is surrounded by an orange haze that kept its surface a mystery for Earth's scientists until the arrival of the Cassini mission. Titan's atmosphere extends about 370 miles high (about 600 kilometers), which makes it a lot higher than Earth's atmosphere. Because the atmosphere is so high, Titan was thought to be the largest moon in the solar system for a long time. It wasn't until 1980 that Voyager was close enough to discover it was actually smaller than Ganymede.
Titan's atmosphere is active and complex, and it is mainly composed of nitrogen (95 percent) and methane (5 percent). Titan also has a presence of organic molecules that contain carbon and hydrogen, and that often include oxygen and other elements similar to what is found in Earth's atmosphere and that are essential for life. 
There is an unsolved mystery surrounding Titan's atmosphere: Because methane is broken down by sunlight, scientists believe there is another source that replenishes what is lost. One potential source of methane is volcanic activity, but this has yet to be confirmed.
Titan's atmosphere may escape to space in a similar way that Earth's atmosphere does. The Cassini spacecraft has detected polar winds that draw methane and nitrogen (charged with interactions with light) out along Saturn's magnetic field and out of the atmosphere. A similar process is believed to happen on Earth with our own magnetic field.


There is an abundance of methane lakes, which are mainly concentrated near its southern pole. In 2014, scientists found a transient feature they playfully referred to as "Magic Island." It's possible that nitrogen bubbles formed in Titan's oceans sit on the surface for a period of time, creating a temporary island that eventually dissipates.
"What I think is really special about Titan is that it has liquid methane and ethane lakes and seas, making it the only other world in the solar system that has stable liquids on its surfaces," Jason Hofgartner, a planetary scientist at Cornell University, told Space.com in 2014. "It not only has lakes and seas, but also rivers and even rain. It has what we call a hydrological cycle, and we can study it as an analog to Earth's hydrological cycle — and it's the only other place we know of where we can do that."
Large areas of Titan's surface are covered with sand dunes made of hydrocarbon. Dunes on Titan may resemble the Namibian desert in Africa.
Because methane exists as a liquid on Titan, it also evaporates and forms clouds, which occasionally causes methane rain. Clouds of methane ice and cyanide gas float over the moon's surface.
"Titan continues to amaze with natural processes similar to those on the Earth, yet involving materials different from our familiar water," Cassini deputy project scientist Scott Edgington, of NASA's Jet Propulsion Laboratory in Pasadena, California, said in a statement.
Sunlight is quite dim on Titan, and climate is driven mostly by changes in the amount of light that accompanies the seasons.
Data also suggests the presence of a liquid ocean beneath the surface, but it is still to be confirmed. [VIDEO: Tour the Strangest Lakes of Saturn's Moon Titan]
As more planets have been found outside of the solar system, Titan has served as a model of cloudy bodies. Examining the atmosphere of the moon has helped scientists to understand the atmospheres of these distant systems.
"It turns out that there's a lot you can learn from looking at a sunset," said Tyler Robinson of NASA's Ames Research Center in a statement.




The Cassini spacecraft is currently in the middle of its Solstice mission at Saturn, the second mission for the spacecraft. The probe's primary mission, called Equinox, was aimed at exploring the Saturnian system and ended in June 2008 after four years orbiting the ringed planet. The spacecraft's mission was then extended, with its current Solstice effort expected to last until 2017, when Saturn's solstice takes place — hence its name.
The Cassini spacecraft launched in 1997 and carried the Huygens probe built by the European Space Agency. Huygens was equipped to study Titan by landing on the Saturn moon and achieved astounding results. For example, many mountains above 10,000 feet high have been identified on the moon. [Video: Future Mission to Saturn's Moon Titan]
Cassini arrived in orbit around Saturn in 2004 with the Huygens probe landing via parachute on Jan. 14, 2005. Because of Huygens's observations, Titan became a top priority for scientists. The mission has achieved excellent results, such as taking the highest resolution images ever achieved of this moon´s surface.
During its primary and extended missions, Cassini was able to get fundamental data about Titan's structure and the complex organic chemistry of its atmosphere. It is because of Cassini's findings that scientists suspect the presence of an internal ocean composed of water and ammonia. The spacecraft has also spotted seasonal change, such as when an ice cloud formed in Titan's southern hemisphere in 2015 (suggesting that winter was going to be harsh in that zone).
The focus of the mission, as it relates to Titan, is to find signs of seasonal changes and volcanic activity.




It is thought that conditions on Titan could make the moon more habitable in the far future. If the sun increases its temperature (6 billion years from now) and becomes a red giant star, Titan's temperature could increase enough for stable oceans to exist on the surface, according to some models. If this happens, conditions in Titan could be similar to Earth's, allowing conditions favorable for some forms of life. [VIDEO: Life on Titan? Saturn's Cold Moon Fascinates Scientists]
Experiments on Earth suggest that Titan could be more habitable than previously thought. Complex organic chemicals once thought to hover high in the atmosphere may lie closer to the surface than estimated.
"Scientists previously thought that as we got closer to the surface of Titan, the moon's atmospheric chemistry was basically inert and dull," Murthy Gudipati, the paper's lead author at JPL, said in a statement. "Our experiment shows that's not true. The same kind of light that drives biological chemistry on Earth's surface could also drive chemistry on Titan, even though Titan receives far less light from the sun and is much colder. Titan is not a sleeping giant in the lower atmosphere, but at least half awake in its chemical activity."


 These All Information Is Gathered From http://www.space.com/15257-titan-saturn-largest-moon-facts-discovery-sdcmp.html & http://gizmodo.com/saturns-moon-titan-is-becoming-even-more-earth-like-1773200389



Saturday, 2 July 2016

 Asteroid Belt

The vast majority of asteroids in the solar system are found in a region of the solar system out beyond Mars. They form the Asteroid Belt. Others orbit in near-Earth space and a few migrate or are thrown out to the outer solar system by gravitational interactions. The four largest asteroids in the belt are Ceres, Vesta, Pallas, and Hygiea. They contain half the mass of the entire belt. The rest of the mass is contained in countless smaller bodies. There was a theory once that if you combined all the asteroids they would make up the missing “Fifth” rocky planet. Planetary scientists estimate that if you could put all that material together that exists there today, it would make a tiny world smaller than Earth’s moon.


Where is the asteroid belt located?

The Asteroid Belt is located in an area of space between the orbits of Mars and Jupiter. That places it between 2.2 and 3.2 astronomical units (AU) from the Sun. The belt is about 1 AU thick. The average distance between objects in the Asteroid Belt is quite large. If you could stand on an asteroid and look around, the next one would be too far away to see very well.

Asteroid Mining

The solar system contains many different types of asteroids, grouped by the minerals they contain. The abundances of precious metals such as nickel, iron, and titanium (to name a few), and water make asteroids an attractive target for mining operations when humans decide to expand their presence through interplanetary space. For example, water from asteroids could serve colonies in space, while the minerals and metals would be used to build habitats and grow food for future space colony inhabitants. Beginning 2013, companies interested in asteroid mining began announcing their plans for future operations on distant planetoids. In addition, NASA is looking into similar missions. The biggest obstacles to asteroid mining are the need to develop affordable spaceflight technology that would allow humans to get to the asteroids of interest.



Facts about the Asteroid Belt

What other fascinating things do we know about the Asteroid Belt?
  • Asteroid Belt objects are made of rock and stone. Some are solid objects, while others are orbiting “rubble piles”.
  •  The Asteroid Belt contains billions and billions of asteroids.
  • Some asteroids in the Belt are quite large, but most range in size down to pebbles.
  • The asteroid 1/Ceres is also designated as a dwarf planet, the largest one in the inner solar system.
  • We know of at least 7,000 asteroids.
  • The Asteroid Belt may contain many objects, but they are spread out over a huge area of space. This has allowed spacecraft to move through this region without hitting anything.
  • Asteroids get their names from suggestions by their discoverers and are also given a number.
  •  The formation of Jupiter disrupted the formation of any worlds in the Asteroid Belt region by scattering asteroids away. This caused them to collide and break into smaller pieces.
  • Gravitational influences can move asteroids out of the Belt.
  • The Asteroid Belt is often referred to as the “Main Belt” to distinguish it from other groups of asteroids such as the Lagrangians and Centaurs.


 These All Information Is Gathered From http://www.space.com/16144-kuiper-belt-objects.html






Kuiper Belt
 
Beyond the gas giant Neptune lies a region of space filled with icy bodies. Known as the Kuiper Belt, this chilly expanse holds trillions of objects, remnants of the early solar system. Dutch astronomer Jan Oort first proposed in 1950 that some comets might come from the the solar system’s far suburbs. That reservoir later became known as the Oort cloud. Earlier, in 1943, astronomer Kenneth Edgeworth had suggested comets and larger bodies might exist beyond Neptune. In 1951, astronomer Gerard Kuiper predicted the existence of a belt of icy objects that now bears his name. Some astronomers refer to it as the Edgeworth-Kuiper Belt.
Astronomers are now hunting for a planet in the Kuiper Belt, a true ninth planet, after evidence of its existence was unveiled on Jan. 20, 2016. The so-called "Planet Nine," as scientists are calling it, is about 10 times the mass of Earth and 5,000 times the mass of Pluto. 


The Kuiper Belt is an elliptical plane in space spanning from 30 to 50 times Earth's distance from the sun, or 2.5 to 4.5 billion miles (4.5 to 7.4 billion kilometers). The belt is similar to the asteroid belt found between Mars and Jupiter, although the objects in the Kuiper Belt tend more to be icy rather than rocky.
Scientists estimate that thousands of bodies more than 62 miles (100 km) in diameter travel around the sun within this belt, along with trillions of smaller objects, many of which are short-period comets. The region also contains several dwarf planets, round worlds too large to be considered asteroids and yet not qualifying as planets because they’re too small, on an odd orbit, and don’t clear out the space around them the way the 8 planets do.

When the solar system formed, much of the gas, dust and rocks pulled together to form the sun and planets. The planets then swept most of the remaining debris into the sun or out of the solar system. But bodies farther out remained safe from gravitational tugs of planets like Jupiter, and so managed to stay safe as they slowly orbited the sun. The Kuiper Belt and its compatriot, the more distant and spherical Oort Cloud, contain the leftover remnants from the beginning of the solar system and can provide valuable insights into its birth.
The classical Kuiper Belt — the most crowded section — lies between 42 and 48 times Earth's distance from the sun. The orbit of objects in this region remain stable for the most part, although some objects occasionally have their course changed slightly when they drift too close to Neptune.



Pluto was the first true Kuiper Belt Object to be seen, although scientists at the time didn't recognize it as such. The existence of the belt wasn't realized until scientists discovered a slow moving, small world in the outer solar system in 1992 (David Jewitt and Jane Luu found the KBO, 1992QB1.). Other objects soon followed, and astronomers quickly saw that the region beyond Neptune teemed with icy rocks and tiny worlds.
Sedna (sed’nah), about three-fourths the size of Pluto, was discovered in 2004. It is so far out from the sun it takes about 10,500 years to make a single orbit. Sedna is about 1,100 miles (1,770 km) wide and circles the sun on an eccentric orbit that ranges between 8 billion miles (12.9 billion km) and 84 billion miles (135 billion km).
In July 2005, astronomers announced the discovery of an object in the Kuiper Belt thought to be larger than Pluto, though subsequent observations revealed it was slightly smaller. Known as Eris, it orbits the sun approximately once every 580 years, traveling almost one hundred times farther from the sun than Earth does. Eris' discovery revealed to some astronomers the problem of terming Pluto a full-scale planet, and in 2006, Pluto, Eris, and the largest asteroid Ceres were reclassified as dwarf planets. Two more dwarf planets, Haumea and Makemake, were discovered in the Kuiper Belt in 2008.



Planet Nine orbits the sun at a distance that is 20 times farther out than the orbit of Neptune. (The orbit of Neptune is 2.7 billion miles from the sun at its closest point.)  The strange world's orbit is about 600 times farther from the sun than the Earth's orbit is from the star.

[The Evidence for 'Planet Nine' in Our Solar System (Gallery)]

Scientists have not actually seen Planet Nine directly. Its existence was inferred by its gravitational effects on other objects in the Kuiper Belt.

['Planet Nine': Facts About the Mysterious Solar System World (Infographic)]

Scientists Mike Brown and Konstantin Batygin at the California Institute of Technology in Pasadena described the evidence for Planet Nine in a study published in the Astronomical Journal. The research is based on mathematical models and computer simulations using observations of six other smaller Kuiper Belt Objects with orbits that aligned in a similar matter.


Because of their small size and distant location, Kuiper Belt Objects are a challenge to spot from Earth. Infrared measurements from NASA's space-based telescope, Spitzer, have helped to nail down sizes for the largest objects.
In order to catch a better glimpse of these remote leftovers from the birth of the solar system, NASA launched the New Horizons mission. The spacecraft reached Pluto in 2015 and continued on with an aim to examine multiple KBOs.
 These All Information Is Gathered From http://www.space.com/16144-kuiper-belt-objects.html
What is Black Hole?

A black hole is a place in space where gravity pulls so much that even light can not get out. The gravity is so strong because matter has been squeezed into a tiny space. This can happen when a star is dying.
Because no light can get out, people can't see black holes. They are invisible. Space telescopes with special tools can help find black holes. The special tools can see how stars that are very close to black holes act differently than other stars.



 How Big Are Black Holes?
 
Black holes can be big or small. Scientists think the smallest black holes are as small as just one atom. These black holes are very tiny but have the mass of a large mountain. Mass is the amount of matter, or "stuff," in an object.
Another kind of black hole is called "stellar." Its mass can be up to 20 times more than the mass of the sun. There may be many, many stellar mass black holes in Earth's galaxy. Earth's galaxy is called the Milky Way.
The largest black holes are called "supermassive." These black holes have masses that are more than 1 million suns together. Scientists have found proof that every large galaxy contains a supermassive black hole at its center. The supermassive black hole at the center of the Milky Way galaxy is called Sagittarius A. It has a mass equal to about 4 million suns and would fit inside a very large ball that could hold a few million Earths.
 

 How Do Black Holes Form?

Scientists think the smallest black holes formed when the universe began.
Stellar black holes are made when the center of a very big star falls in upon itself, or collapses. When this happens, it causes a supernova. A supernova is an exploding star that blasts part of the star into space.
Scientists think supermassive black holes were made at the same time as the galaxy they are in.





 If Black Holes Are "Black," How Do Scientists Know They Are There?

A black hole can not be seen because strong gravity pulls all of the light into the middle of the black hole. But scientists can see how the strong gravity affects the stars and gas around the black hole. Scientists can study stars to find out if they are flying around, or orbiting, a black hole.
When a black hole and a star are close together, high-energy light is made. This kind of light can not be seen with human eyes. Scientists use satellites and telescopes in space to see the high-energy light.


Could A Black Hole Destroy Earth?

Black holes do not go around in space eating stars, moons and planets. Earth will not fall into a black hole because no black hole is close enough to the solar system for Earth to do that.
Even if a black hole the same mass as the sun were to take the place of the sun, Earth still would not fall in. The black hole would have the same gravity as the sun. Earth and the other planets would orbit the black hole as they orbit the sun now.
The sun will never turn into a black hole. The sun is not a big enough star to make a black hole.
 
 These all information is gathered from http://www.nasa.gov/audience/forstudents/k-4/stories/nasa-knows/what-is-a-black-hole-k4.html

 More About Black Holes
Space Place in a Snap: What Is a Black Hole?
Black Hole Rescue 
Fall Into a Black Hole



Sunday, 20 December 2015


What is Space?
We can see in our detectors. We measure long distances in space in "light-years," representing the distaance From the perspective of an Earthling, outer space is a zone that occurs about 100 kilometers (60 miles) above the planet, where there is no appreciable air to breathe or to scatter light. In that area, blue gives way to black because oxygen molecules are not in enough abundance to make the sky blue.
Further, space is a vacuum, meaning that sound cannot carry because molecules are not close enough together to transmit sound between them. That's not to say that space is empty, however. Gas, dust and other bits of matter float around "emptier" areas of the universe, while more crowded regions can host planets, stars and galaxies.
No one knows exactly how big space is. The difficulty arises because of what it takes for light to travel in a year (roughly 5.8 trillion miles, or 9.3 trillion kilometers).





What is a Space time?
 In physics, spacetime is any mathematical model that combines space and time into a single interwoven continuum. The spacetime of our universe is "usually" interpreted from a Euclidean space perspective, which regards space as consisting of three dimensions, and time as consisting of one dimension, the "fourth dimension". By combining space and time into a single manifold called Minkowski space, physicists have significantly simplified a large number of physical theories, as well as described in a more uniform way the workings of the universe at both the supergalactic and subatomic levels.



Explanation

In non-relativistic classical mechanics, the use of Euclidean space instead of spacetime is appropriate, because time is treated as universal with a constant rate of passage that is independent of the state of motion of an observer. In relativistic contexts, time cannot be separated from the three dimensions of space, because the observed rate at which time passes for an object depends on the object's velocity relative to the observer and also on the strength of gravitational fields, which can slow the passage of time for an object as seen by an observer outside the field.
In cosmology, the concept of spacetime combines space and time to a single abstract universe. Mathematically it is a manifold consisting of "events" which are described by some type of coordinate system. Typically three spatial dimensions (length, width, height), and one temporal dimension (time) are required. Dimensions are independent components of a coordinate grid needed to locate a point in a certain defined "space". For example, on the globe the latitude and longitude are two independent coordinates which together uniquely determine a location. In spacetime, a coordinate grid that spans the 3+1 dimensions locates events (rather than just points in space), i.e., time is added as another dimension to the coordinate grid. This way the coordinates specify where and when events occur. However, the unified nature of spacetime and the freedom of coordinate choice it allows imply that to express the temporal coordinate in one coordinate system requires both temporal and spatial coordinates in another coordinate system. Unlike in normal spatial coordinates, there are still restrictions for how measurements can be made spatially and temporally (see Spacetime intervals). These restrictions correspond roughly to a particular mathematical model which differs from Euclidean space in its manifest symmetry.
Until the beginning of the 20th century, time was believed to be independent of motion, progressing at a fixed rate in all reference frames; however, following its prediction by special relativity, later experiments confirmed that time slows at higher speeds of the reference frame relative to another reference frame. Such slowing, called time dilation, is explained in special relativity theory. Many experiments have confirmed time dilation, such as the relativistic decay of muons from cosmic ray showers and the slowing of atomic clocks aboard a Space Shuttle relative to synchronized Earth-bound inertial clocks. The duration of time can therefore vary according to events and reference frames.
When dimensions are understood as mere components of the grid system, rather than physical attributes of space, it is easier to understand the alternate dimensional views as being simply the result of coordinate transformations.
The term spacetime has taken on a generalized meaning beyond treating spacetime events with the normal 3+1 dimensions. It is really the combination of space and time. Other proposed spacetime theories include additional dimensions—normally spatial but there exist some speculative theories that include additional temporal dimensions and even some that include dimensions that are neither temporal nor spatial (e.g., superspace). How many dimensions are needed to describe the universe is still an open question. Speculative theories such as string theory predict 10 or 26 dimensions (with M-theory predicting 11 dimensions: 10 spatial and 1 temporal), but the existence of more than four dimensions would only appear to make a difference at the subatomic level.


What is Time travel?

Time travel is the concept of movement (often by a human) between different points in time in a manner analogous to moving between different points in space, typically using a hypothetical device known as a time machine. Time travel is a recognized concept in philosophy and fiction, but travel to an arbitrary point in time has a very limited support in theoretical physics, usually only in conjunction with quantum mechanics or Einstein–Rosen bridges. Sometimes the above narrow meaning of time travel is used, sometimes a broader meaning. For example, travel into the future (not the past) via time dilation is a well-proven phenomenon in physics (relativity) and is routinely experienced by astronauts, but only by several milliseconds, as they can verify by checking a precise watch against a clock that remained on Earth. Time dilation by years into the future could be done by taking a round trip during which you move at speeds approaching that of light, but this is not currently technologically feasible for manned vehicles.



Is Time travel possible?
 
Time travel's been one of man's wildest fantasies for centuries. It's long been a popular trend in movies and fiction, inspiring everything from Charles Dickens' A Christmas Carol to H.G. Wells' The Time Machine to the Charlton Heston shrine that is The Planet of the Apes. And with the opening of Interstellar today—n0t to spoil anything—we're about to fantasize about it even more.
The most fantastic thing? It's probably possible.

What's almost impossible
 
Let's start with the bad news. We probably can't travel back in time and watch the Egyptians build the pyramids. In the last century scientists came up with a number of theories that suggested it is indeed plausible to take a leap into the future; going back in time, unfortunately, is much more complicated. But it's not necessarily impossible.
Albert Einstein laid the groundwork for much of the theoretical science that governs most time travel research today. Of course, scientists like Galileo and Poincaré that came before him helped, but Einstein's theories of special and general relativity dramatically changed our understanding of time and space. And it's because of these well-tested theories that we believe time travel is possible.
One option for would be a wormhole, also known as an Einstein-Rosen bridge. Along with physicist Nathan Rosen, Einstein suggested the existence of wormholes in 1935, and although we've yet to discover one, many scientists have contributed their own theories about how wormholes might work. Stephen Hawking and Kip Thorne are probably the most well known. Thorne, a theoretical physicist at CalTech, even helped Christopher Nolan with the science behind Interstellar.
So let's just assume that wormholes do exist. In the late 1980s, Thorne said that a wormhole could be made into a time machine. According to Einstein's theory of general relativity, a wormhole could act like a bridge though space-time by connecting two distant points with a shortcut. Certain types of wormholes, it's theorized, could allow for time travel in either direction, if we could accelerate one mouth of the wormhole to near-light speed and then reverse it back to its original position. Meanwhile, the other mouth would remain stationary. The result would be that the moving mouth would age less slowly than the stationary mouth thanks to the effect of time dilation—more on this in a second.
But there are several major caveats of traveling back in time with this method. Chief among them is the simple fact that we'd need a method for creating wormholes, and once created, the wormhole would only allow us to travel as far back as the point in time when it was created. So we'll definitely never be spectators to Great Pyramids' construction.
The other really serious caveat is that we'd need a way to move one of the mouths of the wormhole nearly the speed of light. In their seminal 1988 paper on wormholes, Thorne and his colleagues assumed that "advanced beings [would] produce this motion by pulling on the right mouth gravitationally or electronically." We can't do that right now, however.
What we can do is travel into the future—but only by a little bit.

What's almost certainly possible
 
In recent years, we've seen some aspects of Einstein's fanciful theories proven true. The latest and perhaps most exciting theory is the aforementioned effect called time dilation. Though we've based technology on the theory for decades, an experiment finally proved this year that time dilation is absolutely a real phenomenon. It's also a phenomenon that could allow us to travel into the future.
Time dilation basically refers to the idea that time passes more slowly for a moving clock than it does for a stationary clock. The force of gravity also affects the difference in elapsed time. The greater the gravity and the greater the velocity, the greater the difference in time. Black holes, like the one depicted in Interstellar, for instance,would produce a massive amount of time dilation, due to their extreme gravitational pull.
Thanks to the space program, we've actually been dealing with this effect for many years. This is why the clocks on the International Space Station tick just a little bit more slowly than clocks on Earth do. Since the space station is moving so fast and is affected by less gravity, time moves more quickly. It's also why no clock on Earth is perfectly accurate, since the effect of time dilation means that time moves more slowly closer to the planet's surface. Okay, maybe one is almost perfect.
A better example of time dilation at work involves GPS satellites. The GPS chip in your smartphone works because there are 24 satellites circling the globe at all times that triangulate your location based on how long it takes time-stamped information to travel to and from the device.
However, scientists learned when building the system that the atomic clocks on GPS satellites do indeed run a little bit fast, since they're moving 9,000 miles per hour in orbit. To be specific, they lose 8 microseconds a day. That's hardly perceivable, but it's enough to throw off the location data. And so GPS technology makes adjustments to the clocks on board to account for the relativistic effects. The equation used is kind of complicated.
The implications of all this are huge. What if you took this to the extreme? If you jumped in a spaceship that flew super fast, time would pass more quickly for people on Earth. You could do a lap around the galaxy and return to Earth in the future. This is basically what happens in Planet of the Apes. In effect, Charlton Heston's character is a time traveler.